Search results for "Pettis set-valued integral"
showing 2 items of 2 documents
Set valued Kurzweil-Henstock-Pettis integral
2005
It is shown that the obvious generalization of the Pettis integral of a multifunction obtained by replacing the Lebesgue integrability of the support functions by the Kurzweil--Henstock integrability, produces an integral which can be described -- in case of multifunctions with (weakly) compact convex values -- in terms of the Pettis set-valued integral.
A decomposition of Denjoy-Khintchine-Pettis and Henstock-Kurzweil-Pettis integrable multifunctions
2010
We proved in one of our earlier papers that in case of separable Banach space valued multifunctions each Henstock-Kurzweil-Pettis integrable multifunction can be represented as a sum of one of its Henstock-Kurzweil-Pettis integrable selector and a Pettis integrable multifunction. Now, we prove that the same result can be achieved in case of an arbitrary Banach space. Moreover we show that an analogous result holds true also for the Denjoy-Khintchine-Pettis integrable multifunctions. Applying the representation theorem we describe the multipliers of HKP and DKP integrable functions. Then we use this description to obtain an operator characterization of HKP and DKP integrability.